Proof of Collatz Theorem Pure & Simple Way!

 


Proof of Collatz Theorem

Pure & Simple

Every Number That is equalized to the power of 2 Reaches To One (GOD)

3n+b ==> an + b ==>      (2x+1)m + 2y +1 = 2^k  ,   y < (2^(k-1) -1) 

Collatz Theorem : Any positive integer divide by 2 if it's even, and multiply by 3 if it's odd and add 1, you'll always get 1.

Collatz's Proof: When the odd number in the Collatz set is equalized to the power of 2, that is, when an + b = 2^k, each number is divisible by 2 and always reaches 1.

a element of (except 0) Natural Odd Numbers

n and m elements of (except 0) All Natural Numbers

b element of (except 0) Z {..-5,-3,-1,1,3,5,7...} +/- Odd numbers

k elements of (except 0) N {1,2,3,4...} All Natural Numbers

 

an+b = 2^(k)

 

x, m, k elements of N (excluding zero) {1,2,3,4...}

y element of Z {..-5,-4,-3,-2,-1,0,1,2,3,4,5,7...}

 

x and y < 2^(k-1)

a=2x+1,

n=m,

b=2y+1

  a * n +   b   = 2^k

(2x+1)m + (2y +1) = 2^k

 

Examples:

 

if k = 5    ==> y < (2^(k-1) -1) ==> y < 15

let y = 14

(2x+1)m + 2(14) + 1 = 2^5

(2x+1)m = 32 - 28 - 1

(2x+1)m = 3

factoring 3

We do not take 2x + 1 = 1 because x = 0 is not the element of N. Zero does not belong to the set where x is defined. So we factor it into 2x + 1 = 3 and m = 1.

2x +1 = 3 and m = 1 and  x = 1  ==> an+b ==> 3*1+29 ==> 32 ==> Divided by 2, it reaches the number 1.

Thus, for the equation (2x+1)m + (2y +1) = 2^k when y < (2^(k-1) -1), each value of the elements x, m, y and k Proves Collatz's Theorem is True.

****************************

Now let's find out if the number 10.001 reaches 1.

If (2x+1)m = 10.001 then The power of 2 closest to 10.001 is 2^14 = 16384.

k=14 then y < (2^(k-1) -1) ==> y < (2^(13) -1)

(2x+1)m + 2y + 1 = 2^14

10.001 + 2y + 1 = 16384

2y = 16384 - 10.002, 2y= 6382, y = 3191

factoring 10001

2x+1 = 73, m = 137 ==> x = 36  ==> an+b ==> 73*137 + 2(3191) +1 ==> 16384

 

This proof is belongs to High Mathematician Oktay Haraççı and programmer by Gaye Haraççı.

Computer programs we made on this subject:

http://gayeer.brinkster.net/cassandra/collatz2/Father_Collatz2.aspx

http://gayeer.brinkster.net/cassandra/collatz/Father_Collatz.aspx

Keywords: Collatz, collatz conjecture solved,  collatz conjecture, unsolved problem, collatz theorem, Wikipedia, Oktay Haraççı, Gaye Haraççı, Proof of the Collatz Conjecture, Lothar Collatz, Ulam, Kakutani, hailstone

Yorumlar

Bu blogdaki popüler yayınlar

Dikkat ! 03 - 06 Temmuz 2021 Kaosta Son Nokta !

25 - 31 Ekim 2021 Haftalık Burç Astroloji: 26 Ekim Haftanın En Yoğun Günü, 30 Ekim Güneşe Dikkat!

02 - 08 Aralık 2024 Astroloji Haftalık Burç Yorumları: Yıkım Haftası! 08 Aralık Haftanın EN Yoğun Günü!